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SUMMARY
Basal-like triple-negative breast cancers (TNBCs) have poor prognosis. To identify basal-like TNBC depen-
dencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed
with the same genes: basal-like BPLER andmyoepithelial HMLER. Expression of the screen’s 154 BPLER de-
pendency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes
were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs
relative to normal epithelial, luminal, and mesenchymal TNBC lines. Proteasome inhibition reduced growth
of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function andmacrometasta-
sis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence.
INTRODUCTION

Triple-negative breast cancers (TNBCs), defined by their lack of

estrogen (ER), progesterone (PR), and Her2 receptors, are an

especially aggressive group of tumors that typically afflict

younger women and have the worst prognosis of any breast tu-

mor subtype (Foulkes et al., 2010; Gusterson, 2009). Although

most TNBCs respond to cytotoxic platinum/taxane-containing

regimens, they are prone to recur, metastasize, and become

resistant to chemotherapy (Foulkes et al., 2010; Metzger-Filho

et al., 2012). TNBCs are the breast cancer subtype most

enriched for poorly differentiated CD44+CD24low/�ESA+ tumor-

initiating cells (T-ICs), sometimes called cancer stem cells, cells
Significance
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genome-wide screen identified without bias genetic dependen
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thought to be responsible not just for tumor initiation but also for

metastasis and resistance to chemotherapy (Al-Hajj et al., 2003).

Because of its poor prognosis, a better understanding of TNBC

and how to treat it is needed.

TNBCs are exceedingly heterogeneous by exome and

genome sequencing (Banerji et al., 2012; Curtis et al., 2012;

Shah et al., 2012; Stephens et al., 2012). Some TNBCs arise in

patients bearing mutations in BRCA1 or BRCA2. Although muta-

tions in TP53 (in 63%–80% of basal TNBC), PIK3CA (in 10% of

TNBC), and PTEN or RB1 (in 8% of TNBC) are common, they

are also found in less-aggressive breast cancers. Moreover,

most mutations occur at <1% frequency in TNBCs, suggesting

that these tumors might be driven by many different
relapse and metastasize after cytotoxic drug treatment. A
cies, and hence potential drug targets, of basal-like TNBCs,
d that basal-like breast cancers, but not other breast cancer
CL-1 and sensitive to proteasome inhibitors. Importantly,
t survive proteasome inhibition. Developing ways to target
zomib does not penetrate tumors well, our findings suggest
ating for treatment of this TNBC subtype.
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mechanisms. Gene expression by TNBCs is also quite varied. A

recent study based on unsupervised hierarchical clustering of

publicly available gene expression arrays of hundreds of primary

TNBCs suggests that TNBCs can be classified based on their

gene expression into at least seven distinct subtypes (Lehmann

et al., 2011). Nonetheless, the majority of TNBCs typically have

an epithelial progenitor (basal-like) phenotype.

Mammalian RNA interference (RNAi) screens have been a

powerful tool to identify without bias the genetic basis for can-

cer-related processes, including cell proliferation, migration,

and apoptosis, but no studies have harnessed the power of

genome-wide RNAi screening to pinpoint potential vulnerabil-

ities of TNBCs (Luo et al., 2009; Zender et al., 2008).We therefore

performed a genome-wide small interfering RNA (siRNA) lethality

screen to identify selective vulnerabilities associated with a

basal-like phenotype.

RESULTS

BPLERDisplay a Basal-like Phenotype and Are Enriched
for Tumor-Initiating Cells
When normal human breast primary epithelial cells are grown in

chemically defined WIT and MEGMmedia, they expand into two

types of cells, epithelial progenitor cells (BPEC) and myoepithe-

lial cells (HMEC), respectively (Figure 1A) (Ince et al., 2007). After

transformation with TERT, SV40 early region, and HRASV12 in

these media, they give rise to BPLER and HMLER cancer lines.

Despite their shared genetic background and similar rates of

proliferation, BPLER had high tumor-initiating potential, forming

tumors in nude mice with as few as 50 cells, whereas 5 3 104

HMLER did not form tumors in 8 weeks (Figures 1B and 1C).

Switching HMLER to WIT for 2 weeks after transformation did

not affect their rate of proliferation or tumor-initiating potential

(data not shown). Thus, to eliminate possible confounding

effects due to differences in medium, in all subsequent experi-

ments BPLER and HMLERwere both grown inWIT. Both BPLER

and HMLER lacked ESR1, PGR, and ERBB2 expression and

expressed basal markers KRT5, KRT14, KRT17, and EGFR

(Figures S1A and S1B available online). Moreover, they both

displayed the breast T-IC phenotype (CD44+CD24low/�ESA+),

suggesting that these markers fall short of specifying tumor-

initiating potential (Figures S1C and S1D). However, BPLER

expressed intermediate levels of both E-cadherin and vimentin

messenger RNA (mRNA) (Figures 1D and 1E) and stained for

both basal CK14 and luminal CK18 proteins (Figure 1F), consis-

tent with an epithelial progenitor phenotype, whereas HMLER

expressed �20-fold more vimentin and negligible amounts of

E-cadherin and only stained for CK14 protein, consistent with

a myoepithelial phenotype.

After orthotopic transplantation in the mammary fat pad of

immunocompromised mice, BPLER initiated tumors that were

histologically similar to human primary TNBC, because they

were poorly differentiated epithelial lesions with focal areas of

glandular differentiation, stained for both CK5 and CK14, and

had high mitotic index, inflammatory infiltrates, reactive stroma,

and pushing borders (Figures S1E and S1F). By principal compo-

nent analysis, the global transcriptional profile of six BPLER

tumors from NOD/SCID mice clustered near human primary

basal-like breast tumors in both the UNC337 (Prat et al., 2010)
CCELL
and Richardson-06 (Richardson et al., 2006) data sets (Figures

1G and S1G).

A Genome-wide siRNA Screen Identifies 154 BPLER
Dependency Genes
Because they were transformed with the same oncogenes,

BPLER and HMLER provide an opportunity to compare selective

vulnerabilities of a basal-like breast epithelial cell line enriched

for T-IC with a closely related myoepithelial cell line with poor

tumor-forming ability. To identify functional dependencies

without bias, we performed a high-throughput genome-wide

siRNA lethality screen in 384-well format by transfecting BPLER

and HMLER cells from the same donor in triplicate wells, each

with a pool of four siRNAs targeting a single gene using the Dhar-

macon siGenome library of 17,378 gene targets. Three days

later, CellTiter-Glo was used to count surviving cells. The

screening conditions were optimized to achieve uniform trans-

fection and sensitivity to knockdown of PLK1, a gene required

for mitosis, and lack of sensitivity to a nontargeting control siRNA

for both cell lines (Figure 2A). Data describing the optimization of

the screen are in Figure S2. Most pools scored within one

median absolute deviation of the plate median (Figure 2B). The

ratio (R) of viable BPLER to viable HMLER cells was calculated.

Of 1,025 siRNA pools that significantly decreased BPLER

viability, 780 affected HMLER similarly. Of the remaining 245

pools, 26 were highly selectively lethal for BPLER (R % 0.55),

76 were moderately selective (0.55 < R % 0.65), and 143 were

modestly selective (0.65 < R % 0.75). To validate these candi-

date hits, we transfected BPLER and HMLER cells separately

with each of the four individual siRNAs comprising each pool.

Among the primary screening hits, 154 reconfirmed with at least

one siRNA (Figure 2C), which we defined as BPLER dependency

genes. Not surprisingly, the validation rates were higher for hits

with lower R values (88% of highly selective, 75% of moderately

selective, and 52% of modestly selective hits). The validated hits

comprise a gene signature of BPLER-selective dependencies.

The 23 highly selective confirmed hits are shown in Figure 2D,

and all hits and data from the screen are provided in Figure 3

and Tables S1 and S2. Sixty-five of the BPLER dependency

genes confirmed with at least two individual siRNAs.

BPLER Dependency Genes Cluster within Defined
Functional Categories
Of the 23 validated highly selective BPLER dependency genes

(Figure 2D), seven are proteasome components (hypergeometric

p value for enrichment 1.13 10�14). Three other genes, the spli-

ceosome component PRPF8 and two RNA helicases (DDX19B

andDHX8), are involved inmRNAbiogenesis and nuclear export.

The list also contains four Zinc-finger genes (likely transcriptional

activators), a nuclear receptor coactivator gene SNW1, the cat-

alytic subunit of the PP2A phosphatase PP2CA, and three genes

RAN, RACGAP1, and HAUS3 that regulate the mitotic spindle.

To make sense of the 154 dependency genes, we first group-

ed the hits into well-defined functional categories, using a com-

bination of the Reactome (Croft et al., 2011), KEGG (Kanehisa

et al., 2010), and Wikipathway (Pico et al., 2008) databases (Ta-

bles S3 and S4). Of the 154 genes, 121 hadwell-described anno-

tations that could be grouped into 13 functions with at least three

assigned genes. The proteasome was highly overrepresented
1736
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Figure 1. BPLER Has a Basal-like Phenotype and Is Enriched for Tumor-Initiating Cells, Compared to HMLER

(A) Schematic depicting the method used to generate BPLER and HMLER from normal breast epithelial cells. Breast organoids maintained in chemically defined

media (WIT and MEGM) were sequentially transformed with retroviral vectors encoding TERT, SV40 early region, and HRASV12.

(B) CellTiter-Glo assay showing proliferation of BPLER, HMLER, and BPE cells in WIT medium.

(C) Tumor incidence in Nu/J mice 8 weeks after subcutaneous injection of the indicated numbers of BPLER, HMLER, or MCF7 cells.

(D and E) qRT-PCR quantification of E-cadherin (D) and vimentin (E) mRNA in BPLER and HMLER cells.

(F) Immunofluorescence staining of cytokeratins CK14 and CK18 in BPLER and HMLER cells. Images are representative of three independent experiments.

Luminal MCF7 and mesenchymal MB231 cells in (D) and (F) were used as control.

(G) Principal component analysis of mRNA expression profiles of six BPLER tumors, generated in NOD/scid mice, and 337 human primary breast tumors

classified as luminal A, luminal B, normal-like, HER2+, basal-like, and claudin-low in the UNC337 set of primary breast cancers. The two first components are

plotted with the proportion of variance explained by each component contained in the axis labels. Data in (B), (D), and (E) indicate mean ± SD.

See also Figure S1.
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with ten proteasome subunits (p < 33 10�10) and six other ubiq-

uitin proteasome system (UPS) genes. Of these, five genes are

involved in ubiquitylation, including two components of the

anaphase-promoting complex (ANAPC2 and ANAPC4) and

one gene NEDD8 that neddylates the cullins to promote mitosis.

We next used GeneMANIA (Warde-Farley et al., 2010) to build a

gene interaction network, incorporating physical and predicted

interactions, colocalization, shared pathways, and shared pro-

tein domains (Figure 3). Eighty-seven genes formed a single in-

teracting network. Genes that participate in the major functional

categories, but are not annotated to have direct protein interac-
CCELL 1736
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tions, were added to this network to produce a core functional-

interaction module. The proteasome and its associated proteins

constituted a core module, linking multiple dependency genes.

Other broad processes that stood out were metabolism,

including two glycolytic enzyme genes (GAPDH and PFKL), the

G1/S transition, and mitosis. Multiple genes involved in mRNA

expression, including RNA polymerases, DNA binding proteins

(likely transcriptional regulators), and mRNA splicing genes,

were also hits. Most modules, and all ten proteasome subunit

genes, were in the network formed with hits reconfirming with

at least two siRNAs (Figure S3).
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Figure 2. Identification of BPLER-Selective Dependencies by High-Throughput siRNA Screening

(A) Cell viability in BPLER and HMLER transfected in high-throughput screening conditions with a custom-made siRNA library containing nontargeting siRNAs

(192 wells/plate) or si-PLK1 (192 wells/plate). Each dot represents the relative CellTiter-Glo signal from individual wells at a given coordinate in three separate

microplates. The Z’ factor, a measure of screening reproducibility, was calculated (Zhang et al., 1999). For both cell lines, Z’ was >0.7 in each of six microplates

transfected in two separate experiments. No significant edge effect was detected in any experiment.

(B) Distribution of R (ratio of viability of BPLER versus HMLER) and BPLER median absolute deviation (MAD)-based Z score for all 17,378 genes in the siRNA

primary screen library. The Z score measures the deviation of BPLER viability from the plate median. A Z score outside the range of�1 to +1 is significant. Genes

were considered hits if R < 0.75 and the BPLER Z score was < �1.5. Colors indicate the relative selectivity of BPLER versus HMLER lethality (green, modestly

selective; blue, moderately selective; red, highly selective).

(C)Numbers of hits in theprimary screen and theconfirmedhits in the secondary screen forwhichat least one individual siRNA from the library pool scoredpositive.

(D) Confirmed highly selective BPLER dependency genes. Hits involved in specific functions are shown in different colors.

See also Figure S2 and Tables S1 and S2.
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Figure 3. BPLER Dependency Genes Cluster within Defined Functional Categories

Functional interaction network of BPLER dependency genes. Genes were grouped according to their participation in the indicated processes. The network was

constructed using Cytoscape. The most highly selective hits are colored red.

See also Figure S3 and Tables S3 and S4.
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Basal-like Cell Lines Rely on BPLER Dependency Genes
More Than Other Breast Cancers
To evaluate whether the screen captured intrinsic vulnerabilities

of specific tumor subtypes, we assessed the dependence of 17

human breast cancer cell lines (Neve et al., 2006) (seven basal-A

[basal-like], six luminal, three basal-B [mesenchymal], and one

unclassified [from a squamous carcinoma]) by transfection with

siRNA pools targeting 15 BPLER dependency genes implicated

in the proteasome (PSMA1, PSMA2, and PSMB4, all of which

significantly affect proteasome activity; Figure S4A), spindle

checkpoint (NDC80, CASC5, RAN, BUB1, and NUF2), meta-

bolism (DHRS13, PFKL, and GAPDH), molecular transport

(DDX19B and RFT1), RNA splicing (PRPF8), and survival

(MCL1) (Figure 4A). Cells were considered sensitive to knock-

down of specific genes if viability declined to %50% of control

cells after 72 hr. These breast cancer cell lines differed greatly

in their requirements for individual BPLER dependency genes.

However, basal-like cell lines sharedmore BPLER dependencies

than non-basal-like cell lines. In fact, all seven basal-like cell lines
CCELL 1736
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were dependent on at least 5 of these 15 genes, whereas only 2

of 6 luminal cell lines and none of the basal-B cell lines shared

five dependencies. HCC70 and MB468 dependencies most

closely resembled BPLER. Basal-like cell lines were more similar

to BPLER and to each other than to non-basal-like cell lines (Fig-

ure 4B). Of note, dependency on MCL-1 was a feature of 6 of 7

basal-like cell lines, and 5 of 7 basal-like cell lines were suscep-

tible to knockdown of at least two proteasome component

genes, whereas non-basal-like cell lines were usually resistant.

Thus, although many BPLER dependencies were not shared

with basal-like TNBC, most basal-like TNBCs shared depen-

dency on the proteasome and MCL-1.

BPLER Dependency Gene Expression Correlates with
Poor Prognosis, Specifically in Human Breast Cancer
We next examined whether expression of BPLER dependency

genes was associated with tumor subtype in breast cancer pa-

tients using the NKI mRNA expression profiles of 295 primary

breast cancers, classified as basal-like, HER2+, luminal A,
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Figure 4. BPLER Dependency Genes Are Associated with a Basal-like TNBC Phenotype and Are Upregulated in Poor Prognosis Breast

Tumors

(A) Evaluation of a subset of BPLER screening hits by knockdown in 17 human breast cancer cell lines of different subtypes. Each cell line was transfected with a

control siRNA or specific siRNA pools against the indicated genes. Cell viability was assessed after 72 hr. Black boxes indicate viability%50% of control siRNA-

transfected cells. Color codes for breast cancer cell lines: Luminal (blue), Basal-A (red), Basal-B (green); HCC1806 and HMLER are squamous (purple).

Comparable transfection efficiency (>80%) for each cell line was verified using a fluorescent siRNA and showing <50% viability after transfection with PLK1

siRNA.

(B) Network showing the degree of similarity in dependencies between BPLER and the other breast cancer cell lines, evaluated and color coded as in (A). Cell lines

with no or only one shared dependency are not included. Edge thickness increases with shared dependencies (max = 10) and the most similar cell are closest.

(C) Patients in the NKI database of 295 human breast primary cancers were analyzed by single sample gene set enrichment analysis (GSEA) for expression of

BPLER dependency genes and the subset of highly selective genes. A Z score for expression of the signature genes was calculated for each sample. The scores

are shown as bean plots to compare the distributions in the tumor subtypes (Basal, basal-like; Lum, luminal; NL, normal-like). Each bean consists of a green line

for each sample with the overall distribution for the subtype represented as a gray density shape and a black line indicating the median Z score. * see text for

p values.

(D–F) Breast tumors from the NKI data set and lung and colon tumors from two independent data sets were divided into two groups based on their expression of

the dependency genes (high, red; low, blue). Kaplan-Meier curves show survival in breast (D), lung (E), and colon (F) cancer patients with higher tumor expression

of all dependency genes (top) or the highly selective subset (bottom).

See also Figure S4 and Table S5.
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luminal B, or normal-like (van de Vijver et al., 2002). The depen-

dency genes were significantly overexpressed in basal-like and

luminal B tumors (which histologically are intermediate between

basal-like and luminal A), relative to other subtypes (p < 33 10�5

and 4 3 10�6, respectively, by Kolmogorov-Smirnov test) (Fig-

ure 4C). The same two subtypes also significantly overexpressed

the 23 validated highly selective genes (p < 3 3 10�6 and 4 3

10�5). To determine whether BPLER dependency gene expres-

sion correlates with poor prognosis in breast cancer, we divided

the NKI tumors into two groups based on expression of the 23

highly selective or 154 BPLER dependency genes. Patients

with high expression of the dependency genes had significantly

reduced survival and time tometastasis, whichweremore signif-

icant if the analysis was restricted to the highly selective hits (Fig-

ures 4D and S4B).

To validate these findings and determine whether the BPLER

dependency genes are specific for breast cancer, the effect of

BPLER dependency gene expression on survival andmetastasis

was assessed in seven additional human tumor data sets (three

breast, two colon, and two lung) comprising 1,296 human pri-

mary tumors (Figures 4E and 4F; Figure S4B–S4D; Table S5)

(Hou et al., 2010; Jorissen et al., 2009; Pawitan et al., 2005;

Schmidt et al., 2008; Smith et al., 2010; Wang et al., 2005). In

the three additional breast cancer cohorts, expression of the

most selective and complete dependency genes again signifi-

cantly correlated with poor survival and early metastasis.

However, there was no significant association with survival or

metastasis in colon or lung cancer. Thus, BPLER dependency

gene expression correlated with poor clinical outcome specif-

ically in breast cancer. The significant link to poor survival in

breast cancer persisted even if the analysis was performed

excluding all genes linked to proliferation (Figure S4E) (Venet

et al., 2011). High expression of proteasome-related hits or

MCL1 was also associated with poor prognosis in breast, but

not lung or colon, tumors (Figures S4F and S4G).

Many published breast cancer signatures are not significantly

better outcome predictors than random signatures of identical

size (Venet et al., 2011). We used the NKI data set to compare

the predictive value of the BPLER dependency genes with

1,000 randomly generated gene signatures of the same size (Fig-

ure S4H). The 154 BPLER dependency genes and the subset of

23 highly selective hits outperformed random gene signatures

(p < 0.01 and p < 0.0001, respectively). The superior predictive

power of these gene sets persisted after eliminating prolifera-

tion-related genes. Thus BPLER dependency genes are upregu-

lated in basal-like tumors and correlate with poor prognosis

selectively in breast cancer.

Proteasome Inhibitors Are Selectively Active against
Basal-like Cell Lines
Among BPLER dependencies, the proteasome stood out. More-

over, 5 of 7 basal-like cell lines were susceptible to PSMA1 and

PSMA2 knockdown. To investigate proteasome dependence,

viability of BPE (TERT-immortalized epithelial cells, Figure 1A)

and 24 breast cancer cell lines was measured 24 hr after treat-

ment with a low concentration (12.5 nM) of the proteasome inhib-

itor bortezomib. Although inhibition of proteasome activity in

basal-like versus non-basal-like cell lines was comparable (Fig-

ure S5A), bortezomib was highly lethal for BPLER and basal-
CCELL 1736
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like cell lines compared to luminal and mesenchymal cell lines

(p < 0.001 and p < 0.006, respectively; Figures 5A and S5B).

Basal-like cell lines were more sensitive to bortezomib across

a broad range of drug concentrations (Figure 5B). Moreover, bor-

tezomib was only slightly cytotoxic to BPE. The in vitro LD50 of

bortezomib for sensitive basal-like cell lines was�5–10 nM. Car-

filzomib (a second-generation proteasome inhibitor drug) also

selectively killed basal-like cell lines but was active in vitro at

�60-fold lower concentrations than bortezomib (Figures S5C

and S5D; data not shown).

RAS activation and inactivation of TP53 and RB1 function are

frequent in basal-like tumors. However, stable transduction of

proteasome-resistant luminal MCF7 cells with active HRAS or

dominant-negative TP53 or with a small hairpin RNA against

RB1 did not modify their response to bortezomib, suggesting

that these functional alterations were not sufficient to confer pro-

teasome dependence (Figure S5E).

Basal-like T-ICs Are Sensitive to Proteasome Inhibition
A goal of current cancer therapeutics research is to eliminate

T-ICs. To examine whether proteasome inhibitors might be

active not only against the bulk of cells but also against the

T-ICs within basal-like cell lines, we examined the effect of

short-term (24 hr), low-dose (12.5 nM) bortezomib exposure on

in vitro colony and sphere formation. Basal-like cell lines that

form colonies when plated at clonal density (HCC1937,

HCC1143, and HCC1954) lost the ability to form colonies after

bortezomib treatment, whereas resistant clones emerged after

paclitaxel treatment (Figure 5C and S5F). In contrast, although

exposure to bortezomib or paclitaxel reduced colony formation

by luminal MCF7 and mesenchymal-like MB231 cells, resistant

clones invariably emerged. Likewise, among breast cancer cell

lines that form spheres under nonadherent conditions, bortezo-

mib, but not paclitaxel, eliminated sphere-forming cells in basal-

like cell lines (Figure 5D). Bortezomib also strongly inhibited

sphere formation by 2 of 3 mesenchymal cell lines (MB231 and

BT549, but not MB436), even though these cell lines as a whole

were resistant to bortezomib, but not by two luminal cell lines

(MCF7 and BT474). Treatment with bortezomib for 24 hr also

decreased viability of mouse 4T1E, a highly malignant basal-

like triple-negative 4T1 subclone, which is enriched for T-IC

(Figures S5G–S5J). The �40% of 4T1-E cells that survived bor-

tezomib were unable to form colonies in vitro or initiate tumors in

syngeneic mice (Figure 5E). Thus, proteasome inhibitors are

active against T-ICs within basal-like cell lines.

Proteasome Inhibition Suppresses TNBCOutgrowth and
Metastasis In Vivo
To investigate whether bortezomib is effective in vivo, protea-

some activity in BPLER tumors in nude mice was measured

18 hr after a single injection of 0.8 mg/kg bortezomib given intra-

tumorally (i.t.), intraperitoneally (i.p.), or intravenously (i.v.) (Fig-

ure 6A). Nearly complete proteasome inhibition was achieved

via i.t. injection, whereas i.p. and i.v. routes were ineffective, sug-

gesting that bortezomib does not penetrate efficiently into

tumors. However, increasing the i.v. dose to 1.6 mg/kg, the

maximally tolerated dose, inhibited proteasome activity in the

tumor. BPLER tumor outgrowth was evaluated by following

tumor volume and measuring tumor weight at sacrifice in mice



A

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

3 6 9 12 15 18 21 24 27 30 33 36 

Tu
m

or
 v

ol
um

e 
(c

m
3 ) 

Days 

Control 
DMSO 
Bortezomib 

M
C

F7
M

B
23

1
H

C
C

19
54

H
C

C
11

43
H

C
C

19
37

D
M

S
O

B
or

te
zo

m
ib

4T1EE

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

3.1 6.2 12.5 25 50 

C
el

l v
ia

bi
lit

y 

Bortezomib (nM) 

BPE 
MCF7 
BT474 
MB231 
MB436 
HCC1143 
HCC1937 
MB468 
4T1E 
BPLER 

DMSO Paclitaxel Bortezomib

B

C

0 

0.2 

0.4 

0.6 

0.8 

1 

Luminal Basal B Basal A 

C
el

l v
ia

bi
lit

y 
 

af
te

r b
or

te
zo

m
ib

 tr
ea

tm
en

t 
(r

el
at

iv
e 

to
 D

M
S

O
) 

(n=9) (n=5) (n=8)

*
*

*

0% 
2% 
4% 
6% 
8% 

10% 
12% 
14% 

BT47
4 

MCF7 

MB43
6 

MB23
1 

BT54
9 

HCC11
87

 

HCC19
54

 

HCC11
43

 

HCC19
37

 

S
ph

er
e 

fo
rm

at
io

n 
(%

) 

DMSO Paclitaxel Bortezomib 
D

Figure 5. Basal-like TNBC Cells and Their T-IC Are Selectively Sensitive to Proteasome Inhibition

(A) Viability of 22 breast cancer cell lines 24 hr after treatment with bortezomib (12.5 nM) relative to vehicle control assessed by CellTiter-Glo. The top and the

bottom of each box represent the 75th and 25th percentile of cell viability, respectively. Upper and lower whiskers represent maximum and minimum cell viability,

respectively. The black horizontal band in each box corresponds tomedian viability. * p < 0.005; ** p < 0.001. Data for individual cell lines are shown in Figure S5B.

(B) Dose-response curve of breast cancer cell lines treated with bortezomib for 24 hr.

(C and D) Colony (C) and sphere formation (D) assays of cell lines treated with bortezomib (12.5 nM) or paclitaxel (100 nM) for 18 hr and cultured for 2 weeks in

drug-free medium. Colonies were allowed to overgrow to enhance detection of slow-growing colonies.

(E) Colony formation (left) and tumor-initiation (right) of viablemouse 4T1E cells after treatment with bortezomib (12.5 nM) for 18 hr ex vivo (at which point�40%of

cells are viable), followed by culture for 2 weeks in drug-free medium (colony assay, left) or mammary fat pad injection in BALB/c mice (tumor initiation, right).

Data in (B), (D), and (E) show mean ± SD and are representative of at least three independent experiments.

See also Figure S5.
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treated every 3 days i.t. (0.8 mg/kg) or weekly i.v. (0.5 or

1.6mg/kg) after subcutaneous tumors became palpable (Figures

6B, 6C, S6A, and S6B). As expected, treatment with low dose i.v.

bortezomibwas ineffective. Compared to control mice, tumors in

bortezomib-treated mice were 85% (i.t.) and 59% (high dose i.v.)

smaller (p < 0.01 and p < 0.02, respectively) and weighed 92%

(i.t.) and 63% (high dose i.v.) less (p < 0.001 and p < 0.006,
CCELL
respectively). Bortezomib induced CASP3 and PARP1 cleavage

in BPLER tumors, when assessed by immunohistochemistry

(Figure 6D) and immunoblot (Figure 6E), suggesting that bortezo-

mib impeded tumor outgrowth by inducing apoptosis. Likewise,

weekly i.v. bortezomib (1.6 mg/kg) inhibited further growth of

palpable basal-like MB468 and HCC1187 tumors (Figures 6F

and 6G; Figures S6C–S6E) but not luminal MCF7-HRASV12 and
1736
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Figure 6. Proteasome Inhibition Suppresses TNBC Growth In Vivo

(A) Proteasome activity in protein lysates from individual subcutaneous BPLER tumors (three mice/group) 18 hr after intratumoral (i.t.), intraperitoneal (i.p), or

intravenous (i.v.) treatment with bortezomib at the indicated dose, as determined by Proteasome-Glo assay, normalized by tissue weight. Proteasome activity in

BPLER treated with 12.5 nM bortezomib in vitro is shown as control (C). The mean ± SD of three replicates is shown. Red bars indicate significant proteasome

inhibition (p < 0.05).

(B and C) Tumor weight in BPLER tumor-bearing mice (five mice/group) after treatment with bortezomib or DMSO.

(D) Immunohistochemistry of BPLER tumors treated i.t. with 0.8 mg/kg bortezomib or DMSO every 3 days.

(legend continued on next page)
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AU565 tumors (Figures 6H, 6I, S6F, and S6G), mirroring the

in vitro sensitivity profile of these cell lines.

Xenografts in immunodeficientmicemay not accurately reflect

what happens in tumor-bearing immunocompetent hosts. We

therefore also assessed the effect of bortezomib in syngeneic

murine TNBC tumor models. Tumors formed in BALB/c mice

orthotopically implanted with 4T1E cells were inhibited by i.v.

bortezomib, even at the lower dose of 0.8 mg/kg (Figures 6J

and S6H). We also assessed the effect of low- and high-dose

i.v. bortezomib on lung metastases that form when 4T1E cells

are injected i.v. At both doses, bortezomib completely inhibited

the formation of lung metastases, assessed by counting tumor

nodules after intratracheal injection of India ink (Figures 6K and

6L). Tp53+/� BALB/c mice spontaneously develop breast can-

cers, many of which resemble human basal-like TNBCs histolog-

ically (Yan et al., 2010). Tumor fragments from spontaneous

basal-like TNBCs were implanted into the mammary fat pad of

BALB/c recipients, half of whom were treated weekly with i.v.

bortezomib. Tumors in bortezomib-treated mice (1.6 mg/kg

i.v.) were �90% smaller and weighed �80% less on average

than in DMSO-treated mice (p < 33 10�6 and p < 0.001, respec-

tively, Figures 6M, S6I, and S6J). Thus, proteasome inhibition

was effective in multiple models of human and mouse basal-

like breast cancer in vivo.

Proteasome Inhibition Induces Apoptosis in BPLER by
Promoting NOXA Accumulation
Although low-dose bortezomib inhibited proteasome activity to a

similar extent (Figure S7A), BPLER cells died, but HMLER were

largely resistant (Figures S5C). Both BPLER and HMLER were

equally sensitive to doxorubicin (Figure S7B). To begin to under-

stand the molecular basis of proteasome addiction in basal-like

cells, we first examined how bortezomib-treated BPLER cells

died. After treatment with bortezomib for 16 hr, BPLER selec-

tively underwent caspase-mediated apoptosis that involved

mitochondrial depolarization and outer membrane permeabiliza-

tion, CASP3 activation and PARP cleavage (Figures 7A, 7B, S7C,

and S7D). Apoptosis was inhibited by the pan-caspase inhibitor

zVAD-fmk (Figure S7C) and by knocking downBAX andBAK, the

bcl-2 family members that trigger the mitochondrial apoptotic

pathway (Figure 7C). However, BPLER cell numbers were not

completely restored by inhibiting apoptosis because bortezomib

also inhibited cell proliferation (data not shown).

A targeted RNAi screen of 22 factors implicated in regulating

apoptosis and the cytotoxic effect of bortezomib identified the

BH3-only protein NOXA as an essential and specific mediator

of the bortezomib response in BPLER (Figure 7D). Silencing
(E) Immunoblot of protein lysates from BPLER tumors 18 hr after a single i.v. dos

individual mouse tumor.

(F–J) Tumor weight in HCC1187 (F), MB468 (G), MCF7-HRASV12 (H), AU565 (I), a

DMSO at the indicated dose, whichwas begun when tumors became palpable (50

subcutaneously. 4T1E cells were injected in the mammary fat pad.

(K and L) Representative India-ink-stained whole lungs from BALB/c mice (four m

injection, mice were treated with i.v. bortezomib (0.8 mg/kg q3d or 1.6 mg/kg q7d

and the mean ± SD of metastatic nodules determined by counting is shown in (L

(M) Tumorweight after weekly i.v. bortezomib (1.6mg/kg) or DMSO inmice implan

arising tumor (five mice/group). Treatment was started 2 days after implantation.

time of sacrifice. *p < 0.05.

See also Figure S6.

CCELL
PMAIP1 (the gene encoding for NOXA) rescued BPLER cells

from bortezomib comparably to zVAD-fmk. In contrast,

knockdown of BCL2L1 orMCL1, but not BCL2, augmented bor-

tezomib-induced death. This screen suggested that other mech-

anisms previously linked to proteasome inhibition, such as p53

activation, NF-kB inhibition, or death receptor signaling, were

not relevant in bortezomib-treated BPLER. Additional experi-

ments also showed that bortezomib-induced cell death in

BPLERwas notmediated by changes in NF-kB signaling, cellular

differentiation, or autophagy (Figures S7E–S7G). Although borte-

zomib caused some ER stress, treatment with any of three ER

stressors for 24 hr did not induce BPLER apoptosis (Figures

S7H and S7I). Bortezomib-induced death also was not blocked

by cotreatment with antioxidants or ERK, MEK, p38, or JNK

chemical inhibitors, suggesting that these pathways were not

critical (Figure S7J).

NOXA is degraded by ubiquitylation and the proteasome

(Gomez-Bougie et al., 2007). NOXA, but not other BH3-only pro-

teins, increased dramatically in BPLER cells treated with borte-

zomib in the presence of zVAD-fmk (Figure S7K). NOXA protein

also increased in vivo in bortezomib-treated BPLER xenografts

(Figure 6E). NOXA expression was regulated both transcription-

ally and posttranscriptionally, because NOXA protein increased

at a low bortezomib concentration that did not alter PMAIP1

mRNA (Figures S7L and S7M). To determine whether other pro-

apoptotic BH3-only proteins contribute to bortezomib-mediated

BPLER death, we examined the effect of their knockdown on

BPLER viability after bortezomib treatment (Figure 7E). Only

knockdown of PMAIP1 rescued BPLER from bortezomib. Taken

together, these data suggest that NOXA mediates BPLER death

from bortezomib.

NOXA Accumulation and MCL-1 Dependence Underlie
Basal-like Breast Cancer Cell Line Sensitivity to
Proteasome Inhibition
We next examined whether NOXA was responsible for protea-

some dependency in basal-like cells more generally. Treatment

with bortezomib for 24 hr activated PARP and CASP3 cleavage

in basal-like MB468, HCC1187, and HCC70 cells, but not in non-

basal-like MCF7, BT474, and HCC1428 cells (Figure 8A). Both

basal-like and mesenchymal TNBC cell lines expressed 5-to

25-fold more PMAIP1 mRNA than immortalized normal breast

epithelial cells or most luminal breast cancer cell lines (Fig-

ure S8A). Treatment with bortezomib increased NOXA protein

in all but one TNBC cell line but had less of an effect on NOXA

levels in immortalized breast epithelial cells and luminal cell lines

(Figure 8B). Thus, the proteasome blocked accumulation of
e of bortezomib (1.6 mg/kg) or DMSO. Each lane represents a sample from an

nd 4T1E (J) tumor-bearing mice after treatment with weekly i.v. bortezomib or

–100mm3). HCC1187,MB468,MCF7-HRASV12, and AU565 cells were injected

ice/group) after i.v. injection of 23 105 4T1E cells. Beginning 2 days after 4T1E

) or DMSO. The most prominent metastatic nodules are indicated by arrows (K),

).

ted in themammary fat padwith tumor fragments from the same spontaneously

Box-and-whisker plots (B, C, F, G, H–J, and M) show median tumor weight at
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Figure 7. Proteasome Inhibition Selectively Induces Apoptosis in BPLER by Promoting NOXA Accumulation

(A) Immunoblot of cells treated for 16 hr with bortezomib (12.5 nM). Each sample was assessed in duplicate independent samples.

(B)Mitochondrial depolarization, assessed by the percentage of DilC1(5)low BPLER andHMLER cells after treatment with 12.5 nMbortezomib, was determined by

flow cytometry.

(C–E) Viability of BPLER cells transfected with the indicated siRNAs and then treated 24 hr later with 12.5 nM bortezomib or DMSO for 24 hr. zVAD-fmk was used

as control. Data for each siRNA were normalized to viability of DMSO-treated cells. Data in (B)–(E) indicate mean ± SD. * p < 0.05.

See also Figure S7.
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NOXA protein in most TNBC cell lines. NOXA appeared to be

especially lethal in basal-like cell lines, because NOXA overex-

pression induced cell death in two basal-like cell lines (MB468

and HCC1187), but not in two non-basal-like cell lines (MB436

and HCC1806) (Figure S8B). Conversely, PMAIP1 silencing in-

hibited bortezomib-induced death in basal-like MB468 and

HCC1187 (Figure S8C).

NOXA exerts its proapoptotic effect by binding to MCL-1 and

BCL2A1 (Deng et al., 2007). MCL-1, a hit in the BPLER screen,

was also a dependency factor for 6 of 7 additional basal-like

cell lines (Figure 4A). The amount of NOXA bound to MCL-1

increased with bortezomib treatment in basal-like MB468 and

HCC1187 (Figure S8D). Moreover, MCL1 knockdown was suffi-

cient to induce PARP and CASP3 cleavage in basal-like MB468

and HCC1187, but not in non-basal-like MB231 andMB436 (Fig-

ure 8C). Together, these data suggest that one mechanism by

which proteasome inhibition kills basal-like cell lines is by accu-

mulation of NOXA, which in turn antagonizes MCL-1, which
CCELL 1736
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these cells depend on for survival. In fact, MCL-1 dependency,

assessed by cell viability after MCL-1 knockdown, strongly

correlated with bortezomib sensitivity in TNBC cell lines (r =

0.93, p < 0.0005; Figure 8D). Of note, BT20, the only bortezo-

mib-resistant basal-like cell line, weakly expressed NOXA

protein and was MCL-1 independent (Figures 4A and 8B).

Steady-state levels of MCL-1 were similar in proteasome-sensi-

tive and insensitive breast cancer cell lines of diverse types (Fig-

ure S8E); moreover, in response to bortezomib, MCL-1 was

slightly increased in both sensitive and resistant cell lines in the

presence of zVAD (Figure S8F). Thus, bortezomib sensitivity

of basal-like cell lines was not due to decreased MCL-1

expression.

DISCUSSION

We used unbiased siRNA screening to uncover the functional

dependencies of a basal-like TNBC cell line enriched for T-ICs
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Figure 8. Bortezomib Sensitivity of Basal-like TNBC Is Linked to NOXA Accumulation and MCL-1 Dependency

(A and B) Immunoblot of breast cancer cell lysates treated or not with 12.5 nM bortezomib for 24 hr.

(C) Immunoblot of breast cancer cells 24 hr after transfection with an siRNA against MCL1 or a nontargeting siRNA (control).

(D) Scatter plot showing cell viability 72 hr afterMCL1 knockdown (x axis) and 24 hr after 12.5 nM bortezomib treatment (y axis) in TNBC cell lines and BPE cells.

Color scheme in (A)–(D) as indicated in (B). All data are representative of at least three independent experiments. *p < 0.05.

See also Figure S8.
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as a starting point for identifying candidate drug targets of basal-

like TNBCs and potentially for the subpopulation of T-ICs within

them. MCL-1 and proteasome dependency were unanticipated

common features of most basal-like TNBC cell lines that were

only occasionally shared by other breast cancers. Treatment

with a clinical proteasome inhibitor bortezomib not only inhibited

basal-like tumor outgrowth but also inhibited metastasis. Impor-

tantly, bortezomib was effective against T-ICs within basal-like

TNBC cell lines—it inhibited in vitro surrogate assays of T-IC

function as well as tumor initiation. This is an important finding

because there are currently no effective therapies targeted at

eliminating T-ICs, which are generally relatively drug resistant

and widely believed to be responsible for relapse andmetastasis

(Valent et al., 2012).

All cells rely on the proteasome for protein homeostasis.

Therefore, it might seem surprising that some cells are more

dependent on this housekeeping function than others. For multi-

ple myeloma cells, which are factories for producing and
CCELL
secreting immunoglobulin protein, selective proteasome depen-

dence seems to make sense, because interfering with the ability

of cells to remove unfolded proteins can lead to ER stress and

apoptosis. However, why other types of cancer cells are sensi-

tive to proteasome inhibition is not well understood. The effects

of proteasome inhibition on cancer cells can lead to cell death by

multiple mechanisms (Eldridge and O’Brien, 2010). Here, we

found that proteasome dependency in BPLER and basal-like

TNBCs is linked to MCL-1 dependency and mediated by

NOXA. The proteasome degrades NOXA (Ohshima-Hosoyama

et al., 2011). The link to MCL-1 is not surprising because MCL-

1 is an antiapoptotic Bcl-2 family member antagonized by

NOXA. A link among MCL-1, NOXA, and proteasome sensitivity

has already been shown in some hematopoietic malignancies

(Dasmahapatra et al., 2012), but not in TNBC. Moreover, MCL-

1 expression is linked to poor prognosis in TNBCs (Ding et al.,

2007; Placzek et al., 2010). However, although NOXA is also

highly upregulated by proteasome inhibition in mesenchymal
1736
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TNBC lines, they are resistant to bortezomib and are not depen-

dent on MCL-1. The reason for this difference is unclear. To take

advantage of proteasome andMCL-1 dependency in developing

targeted therapies for TNBCs, it will be important to understand

better why basal-like TNBC are especially vulnerable to MCL-1

inhibition and why mesenchymal TNBCs are able to survive it.

The tight linkwe foundbetweenMCL-1 and proteasome sensi-

tivity (Figure 8D) in TNBC could be useful for identifying tumors

that will respond to proteasome inhibitor therapy. Inhibiting

MCL-1, using aBH3-mimetic, such asGX15-070 (Dasmahapatra

et al., 2012), or lowering its expression via inhibition of cyclin-

dependent kinases or glucose metabolism (Pradelli et al., 2010)

might synergize with proteasome inhibition in basal-like TNBCs.

Proteasome inhibitors failed to show clinical benefit in small

unstratified breast cancer trials (Awada et al., 2008; Engel

et al., 2007; Schmidt et al., 2008). Based on our findings, this is

not surprising, because proteasome addiction is a feature of

only a subset of TNBCs. TNBCs comprise only �15% of all

breast cancers and only about half of these are basal-like (Leh-

mann et al., 2011). Poor penetration into the tumor is a well-

known limitation of bortezomib that might partly explain its lack

of efficacy in solid tumors. In fact, the maximally tolerated borte-

zomib dose in mice was needed to achieve proteasome inhibi-

tion of xenografted tumors. At least 14 novel proteasome inhib-

itors are in advanced clinical development, and one, carfilzomib,

has been approved for multiple myeloma (Cohen and Tcherpa-

kov, 2010). Proteasome inhibitors with improved pharmacoki-

netics and pharmacodynamics should further improve re-

sponses. It is worth evaluating these drugs in basal-like TNBCs.

Is the BPLER cell line a reasonable model for basal-like

TNBCs? No individual cell line can hope to recapitulate the ge-

netic heterogeneity of these tumors, and the oncogenes used

for transformation of BPLER are not representative of TNBCmu-

tations. Nonetheless, we chose BPLER in combination with

HMLER for our screen because these two cell lines are remark-

ably epigenetically stable in chemically defined media in vitro

with very distinct phenotypes, while harboring the same set of

transforming oncogenes. BPLER have the bipotent epithelial

progenitor phenotype of many basal-like TNBCs and form tu-

mors that resemble basal-like TNBCs histologically and by

gene expression. HMLER give rise to squamous tumors, a rare

form of breast cancer. Thus, these two genetically well-defined,

virtually isogenic cell lines offered an opportunity to pinpoint

selective dependencies associated with a basal-like phenotype.

Although BPLER may only partially represent basal-like TNBCs,

the BPLER screen identified candidate genes that might be

essential for breast tumor cells locked in a progenitor-like state.

BPLER are also attractive because they are highly enriched for

T-IC, which normally represent a minor subpopulation of breast

cancer cell lines and are difficult to study in vitro. In fact the only

other human TNBC cell line enriched for T-IC is derived from

HMLER by stable knockdown of E-cadherin (HMLER-shEcad)

(Gupta et al., 2009). However, HMLER-shEcad cells uniformly

form mesenchymal (not basal-like) tumors in immunodeficient

mice. Thus, the BPLER and HMLER-shEcad T-ICs are likely

quite distinct. These results suggest that even TNBC T-ICs are

heterogeneous.

Although �18,000 genes were screened using pools of four

siRNAs/genes, certain BPLER dependencies might have been
CCELL 1736
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missed, because some poolsmay have failed to induce sufficient

gene silencing. Moreover, elimination of genes whose knock-

downwas lethal to both BPLER andHMLERmay have discarded

possible drug targets that might be effective for a broader range

of breast cancers.

Our screen identified 154 BPLER dependency genes whose

expression was linked to poor prognosis specifically in breast

cancer, but not in colon or lung cancer. Expression of the stron-

gest hits, only 23 genes, was just as predictive as the longer list, if

not better. About 20%of these hits promote cell proliferation, but

the proliferation-related genes did not explain the prognostic

value of the gene list, since removing them did not seriously alter

their ability to identify poor prognosis tumors. Combining the

BPLER dependency gene list with lists of dependencies of other

TNBCs, that need to be experimentally identified, should provide

even better prognostic gene signatures that could guide patient

therapy.

The BPLER dependency gene list, which is of a manageable

size, may point the way to other potential TNBC drug targets.

For example, the dependency genes include glycolytic enzyme

genes. In preliminary studies, we found that BPLER are

selectively sensitive to glycolysis inhibition. In fact, a recent

study identified glycolysis as a selective TNBC dependency

(McCleland et al., 2012). A recent chemical screen in HMLER-

shEcad identified the potassium ionophore salinomycin as a

candidate drug (Gupta et al., 2009). Three BPLER dependency

genes are potassium-sodium exchange transporters, suggest-

ing that specific ion transport inhibition may also be effective

against basal-like TNBCs. Drugs that inhibit mitosis, like pacli-

taxel, form the basis of current TNBC treatment. The BPLER

dependency list includes multiple genes involved in mitosis. It

is, however, uncertain why BPLER is selectively sensitive to in-

hibiting mitosis compared to other cancer cells like HMLER,

which proliferate at a similar rate.
EXPERIMENTAL PROCEDURES

RNAi Screen

Screening was performed at the Harvard ICCB-L Screening Facility (http://

iccb.med.harvard.edu) using the Human siGenome siRNA Library (Dharma-

con). Library plates with >50% of siRNA pools targeting deprecated genes

(i.e., putative transcripts no longer supported by transcript evidence) were

excluded. A total of 17,378 siRNA pools, each targeting a different gene,

were evaluated. Individual siRNAs in the library have not been validated.

Thus, the percentage of siRNA pools that effectively induce gene silencing,

or the extent and duration of protein knockdown, is unknown. The manufac-

turer estimates that most siRNA pools contain at least one effective siRNA.

Procedures were optimized and validated for high-throughput screening under

ICCB-L guidance. Screening conditions were identical for BPLER and HMLER

cells. For each cell line, each siRNA or pool of siRNAs was transfected in trip-

licate wells. Eachmicroplate included eight negative and eight positive internal

controls to monitor experimental conditions across the screen. Only micro-

plates with a Z’ factor >0.5 were analyzed (covering 98.7% of the siRNA li-

brary). Cells were dispensed with WellMate rapid plate dispensers and

Teflon-coated manifolds (Matrix). siRNAs libraries were transferred into 384-

well assay plates using liquid handling robots (Velocity 11 Bravo). siRNAs

were reverse-transfected with Dharmafect #1 (Dharmacon) in WIT medium us-

ing a final concentration of 50 nM in 384-well white/clear microplates (Corning

Cat. # 3707). Fresh medium was added after 24 hr, and cell viability was as-

sessed by CellTiter-Glo (Promega) 3 days after transfection using an Envision

high-throughput plate reader (PerkinElmer). A detailed description of the pro-

tocol is available upon request.

http://iccb.med.harvard.edu
http://iccb.med.harvard.edu
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Expression Analysis

Expression arrays and clinical data used in the study are listed in Table S5.

Normalized expression tables were downloaded from the NCBI Gene Expres-

sion Omnibus (http://www.ncbi.nlm.nih.gov/geo) using the R package

GEOquery. The associated metadata were retrieved using GEOmetaDB.

Clinical and expression data for the NKI data set were accessed using

the R package breastCancerNKI. http://compbio.sph.harvard.edu/hidelab/

pathprint was used to map probes to Entrez Gene IDs, merging multiple

probes by their mean expression levels using systematically updated annota-

tions obtained from AILUN. Gene expression of BPLER tumor explants was

analyzed using Affymetrix arrays and Affymetrix GENECHIP software normal-

ized using Mas5 in R.

Principal Component Analysis

Human breast tumor array data were obtained from two previous studies on

Agilent and Affymetrix arrays (Richardson data set [47 cases; Richardson

et al., 2006] and UNC data set [337 cases; Prat et al., 2010]). Differentially ex-

pressed genes across the tumor data sets were identified using the R package

Linear Models for Microarray Data (LIMMA). Array data were rank normalized

using genes common across the tumor and BPLER explant arrays. Principal

component analysis was based on the set of genes that differentiate the tumor

data sets.

Pathway Enrichment Analysis and Network Visualization

A p value for the overrepresentation of a suite of canonical pathways (KEGG,

Wikipathways, and Reactome) in the 154 gene signature was obtained using

the hypergeometric distribution. A visualization of the interactions between

the genes in the top enriched pathways was rendered using the Genemania

plugin within Cytoscape (Killcoyne et al., 2009). Eighty-seven genes formed

a single interacting network. Genes that participate in the major functional cat-

egories, but are not annotated to have direct protein interactions, were added

to this network to produce a core functional-interaction module. Similarities in

dependencies between BPLER and other breast cancer cell lines were visual-

ized using the Prefuse force-directed network plugin within Cytoscape.

Code Availability

The R code used to produce bioinformatic results and figures is available as

Sweave files upon request.

In Vivo Experiments

All animal procedures were performed with Harvard Medical School and Bos-

ton Children’s Hospital ACUC approval. See also the Supplemental Experi-

mental Procedures.

Studies Involving Human Subjects

Informed consent was not required.

ACCESSION NUMBERS

ThemRNAmicroarray data fromBPLER tumor explants in Figures 1G and S1G

were deposited into the GEO database (GSE48444).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccr.2013.07.008.
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Schmidt, M., Böhm, D., von Törne, C., Steiner, E., Puhl, A., Pilch, H., Lehr, H.A.,

Hengstler, J.G., Kölbl, H., andGehrmann,M. (2008). The humoral immune sys-

tem has a key prognostic impact in node-negative breast cancer. Cancer Res.

68, 5405–5413.

Shah, S.P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding,

J., Tse, K., Haffari, G., et al. (2012). The clonal and mutational evolution spec-

trum of primary triple-negative breast cancers. Nature 486, 395–399.

Smith, J.J., Deane, N.G., Wu, F., Merchant, N.B., Zhang, B., Jiang, A., Lu, P.,

Johnson, J.C., Schmidt, C., Bailey, C.E., et al. (2010). Experimentally derived

metastasis gene expression profile predicts recurrence and death in patients

with colon cancer. Gastroenterology 138, 958–968.

Stephens, P.J., Tarpey, P.S., Davies, H., Van Loo, P., Greenman, C., Wedge,

D.C., Nik-Zainal, S., Martin, S., Varela, I., Bignell, G.R., et al. (2012). The land-

scape of cancer genes andmutational processes in breast cancer. Nature 486,

400–404.

Valent, P., Bonnet, D., De Maria, R., Lapidot, T., Copland, M., Melo, J.V.,

Chomienne, C., Ishikawa, F., Schuringa, J.J., Stassi, G., et al. (2012). Cancer

stem cell definitions and terminology: the devil is in the details. Nat. Rev.

Cancer 12, 767–775.

van de Vijver, M.J., He, Y.D., van’t Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W.,

Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., et al. (2002). A gene-

expression signature as a predictor of survival in breast cancer. N. Engl. J.

Med. 347, 1999–2009.

Venet, D., Dumont, J.E., and Detours, V. (2011). Most random gene expression

signatures are significantly associated with breast cancer outcome. PLoS

Comput. Biol. 7, e1002240.

Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F.,

Talantov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., et al. (2005).

Gene-expression profiles to predict distant metastasis of lymph-node-nega-

tive primary breast cancer. Lancet 365, 671–679.

Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao,

P., Franz, M., Grouios, C., Kazi, F., Lopes, C.T., et al. (2010). The GeneMANIA

prediction server: biological network integration for gene prioritization and pre-

dicting gene function. Nucleic Acids Res. 38(Web Server issue), W214–W220.

Yan, H., Blackburn, A.C., McLary, S.C., Tao, L., Roberts, A.L., Xavier, E.A.,

Dickinson, E.S., Seo, J.H., Arenas, R.B., Otis, C.N., et al. (2010). Pathways

contributing to development of spontaneous mammary tumors in BALB/c-

Trp53+/� mice. Am. J. Pathol. 176, 1421–1432.

Zender, L., Xue,W., Zuber, J., Semighini, C.P., Krasnitz, A., Ma, B., Zender, P.,

Kubicka, S., Luk, J.M., Schirmacher, P., et al. (2008). An oncogenomics-based

in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135,

852–864.

Zhang, J.H., Chung, T.D., and Oldenburg, K.R. (1999). A simple statistical

parameter for use in evaluation and validation of high throughput screening as-

says. J. Biomol. Screen. 4, 67–73.


	A Genome-wide siRNA Screen Identifies Proteasome Addiction as a Vulnerability of Basal-like Triple-Negative Breast Cancer Cells
	Introduction
	Results
	BPLER Display a Basal-like Phenotype and Are Enriched for Tumor-Initiating Cells
	A Genome-wide siRNA Screen Identifies 154 BPLER Dependency Genes
	BPLER Dependency Genes Cluster within Defined Functional Categories
	Basal-like Cell Lines Rely on BPLER Dependency Genes More Than Other Breast Cancers
	BPLER Dependency Gene Expression Correlates with Poor Prognosis, Specifically in Human Breast Cancer
	Proteasome Inhibitors Are Selectively Active against Basal-like Cell Lines
	Basal-like T-ICs Are Sensitive to Proteasome Inhibition
	Proteasome Inhibition Suppresses TNBC Outgrowth and Metastasis In Vivo
	Proteasome Inhibition Induces Apoptosis in BPLER by Promoting NOXA Accumulation
	NOXA Accumulation and MCL-1 Dependence Underlie Basal-like Breast Cancer Cell Line Sensitivity to Proteasome Inhibition

	Discussion
	Experimental Procedures
	RNAi Screen
	Expression Analysis
	Principal Component Analysis
	Pathway Enrichment Analysis and Network Visualization
	Code Availability
	In Vivo Experiments
	Studies Involving Human Subjects

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References




